Ban chỉ ĐẠo công nghệ thông tin của cơ quan đẢng giáo trình thiết kế, XÂy dựng và quản trị CƠ SỞ DỮ liệu hà NỘI, 2004



tải về 1.04 Mb.
trang16/29
Chuyển đổi dữ liệu07.07.2016
Kích1.04 Mb.
1   ...   12   13   14   15   16   17   18   19   ...   29

2.Chuyển đổi mô hình cụ thể


Trong chương 2 chúng ta đã phân tích và thiết kế mô hình ER cho bài toán CÔNGTY (Hình vẽ 2.6). áp dụng các bước của thuật toán ở trên, chúng ta có mô hình quan hệ cho bài toán CÔNGTY như sau:

NHÂNVIÊN(Họđệm, Tên, MãsốNV, Ngàysinh, Địachỉ, Giớitính, Lương, MãsốNGS, MãsốĐV)

ĐƠN VỊ (TênĐV, MãsốĐV, MãsốNQL, Ngàybắtđầu)

ĐƠNVỊ_ĐỊAĐIỂM (MãsốĐV, ĐịađiểmĐV)

DỰÁN(TênDA, MãsốDA, ĐịađiểmDA, MãsốĐV)

NHÂNVIÊN_DỰÁN(Mã sốNV, Mã số DA, Số giờ)

PHỤTHUỘC(MãsốNV, TênPT, Giớitính, Ngàysinh, Quanhệ)

Hinh 3.11. Lược đồ cơ sở dữ liệu “CÔNG TY”

Chương 4: PhỤ thuỘc hàm và chuẨn hoá
cơ sỞ dỮ liỆu quan hỆ

Trong chương này chúng ta sẽ thảo luận về một số vấn đề lý thuyết đã được phát triển nhằm mục đích chọn được lược đồ quan hệ “tốt”, nghĩa là đo đạc một cách hình thức vì sao tập hợp các thuộc tính này nhóm vào trong các lược đồ quan hệ thì tốt hơn nhóm kia. Chúng ta có thể nói đến “tính tốt”của các lược đồ quan hệ ở hai mức : mức thứ nhất là mức lôgic, mức thứ hai là mức cài đặt. Mức thứ nhất liên quan đến việc các người sử dụng thể hiện các lược đồ quan hệ và ý nghĩa của các thuộc tính của chúng như thế nào. Mức thứ hai liên quan đến việc các bộ trong một quan hệ cơ sở được lưu trữ và cập nhật như thế nào.

Việc thiết kế cơ sở dữ liệu có thể được thực hiện bằng cách sử dụng hai giải pháp: dưới lên (bottom-up) hoặc trên xuống (top-down). Phương pháp thiết kế dưới lên xem các mối liên kết cơ bản giữa các thuộc tính riêng rẽ như là điểm xuất phát và sử dụng chúng để xây dựng nên các quan hệ.Giải pháp này còn có tên gọi là thiết kế bằng tổng hợp (design by synthesis). Ngược lại, phương pháp thiết kế trên xuống bắt đầu từ một số các nhóm thuộc tính trong các quan hệ nhận được từ thiết kế quan niệm và các hoạt động chuyển đổi. Sau đó việc thiết kế bằng phân tích được áp dụng đối với các quan hệ một cách riêng rẽ và tập thể dẫn đến việc tách các quan hệ cho đến khi đạt được tính chất mong muốn.

I.CÁC NGUYÊN TẮC THIẾT KẾ LƯỢC ĐỒ QUAN HỆ

1.Ngữ nghĩa của các thuộc tính quan hệ


Khi chúng ta nhóm các thuộc tính để tạo nên một lược đồ quan hệ, ta giả thiết rằng có một ý nghĩa nào đó gắn với các thuộc tính. ý nghĩa này, hoặc ngữ nghĩa, chỉ ra việc hiểu các giá trị thuộc tính lưu trong các bộ của một quan hệ như thế nào. Nói cách khác, các giá trị thuộc tính trong một bộ liên hệ với nhau như thế nào. Nếu việc thiết kế khái niệm được làm một cách cẩn thận, sau đó là một chuyển đổi sang các quan hệ thì hầu hết ngữ nghĩa đã được giải thích và thiết kế kết quả có một ý nghĩa rõ ràng. Nói chung, việc giải thích ngữ nghĩa của quan hệ càng dễ dàng thì việc thiết kế lược đồ quan hệ càng tốt. Nguyên tắc sau sẽ hỗ trợ cho việc thiết kế lược đồ quan hệ.

Nguyên tắc 1: Thiết kế một lược đồ quan hệ sao cho dễ giải thích ý nghĩa của nó. Đừng góp các thuộc tính từ nhiều kiểu thực thể và kiểu liên kết vào một quan hệ đơn. Một cách trực quan, nếu một lược đò quan hệ tương ứng với một kiểu thực thể hoặc một kiểu liên kết thì ý nghĩa trở nên rõ ràng. Ngược lại, một quan hệ tương ứng với một hỗn hợp các thực thể và liên kết thì ý nghĩa trở nên không rõ ràng.

2.Thông tin dư thừa trong các bộ và cập nhật dị thường


Một mục tiêu của thiết kế lược đồ là làm tối thiểu không gian lưu trữ các quan hệ cơ sở. Các thuộc tính được nhóm vào trong các lược đồ quan hệ có một ảnh hưởng đáng kể đến không gian lưu trữ. Nếu cùng một thông tin duực lưu giữ nhiều lần trong cơ sở dữ liệu thì ta gọi đó là dư thừa thông tin và điều đó sẽ làm lãng phí không gian nhớ. Ngoài việc lãng phí không gian nhớ nó còn dẫn đến một vấn đề nghiêm trọng là cập nhật bất thường. Cập nhật bất thướng bao gồm : Chèn bất thường, Xoá bất thường, Sửa đổi bất thường. Những cập nhật bất thường này sẽ đưa vào cơ sở dữ liệu những thông tin “lạ”và làm cho cơ sở dữ liệu mất tính đúng đắn.

Nguyên tắc 2: Thiết kế các lược đồ quan hệ cơ sở sao cho không sinh ra những cập nhật bất thường trong các quan hệ. Nếu có xuất hiện những cập nhật bất thường thì phải ghi chép lại một cách rõ ràng và phải đảm bảo rằng các chương trình cập nhật dữ liệu sãe thực hiện một cách đúng đắn.

Các giá trị rỗng trong các bộ

Trong một số thiết kế lược đồ, chúng ta có thể nhóm nhiều thuộc tính với nhau vào một quan hệ “béo”. Nếu nhiều thuộc tính không áp dụng cho mọi bộ trong một quan hệ, chúng ta sẽ kết thúc với nhiều giá trị null trong các bộ đó. Điều đó có thể làm tăng không gian ở mức lưu trữ và có thể dẫn đến vấn đề về hiểu ý nghĩa của các thuộc tính và về việc chỉ ra các phép nối ở mức lô gic. Một vấn đề nữa với các giá trị null là không áp dụng được các hàm nhóm như count, sum. Hơn nữa, các giá trị null có thể nhiều cách giải thích, chẳng hạn như thuộc tính không áp dụng được cho bộ này, giá trị của thuộc tính cho bộ này là không có hoặc giá trị cho thuộc tính là có nhưng vắng mặt. Tóm lại, có cùng một cách biểu diễn cho moi giá trị null là thoả hiệp các ý nghĩa khác nhau mà chung có thể có.

Nguyên tắc 3: Tránh càng xa càng tốt việc đặt vào trong các quan hệ cơ sở những thuộc tính mà các giá trị của chúng thường xuyên là null. Nếu không thể tránh được các giá trị null thì phải đảm bảo rằng chúng chỉ áp dụng trong các trường hợp đặc biệt và không áp dụng cho một số lớn các bộ trong quan hệ.

3. Tạo ra các bộ giả


Nhiều khi chúng ta đưa vào cơ sở dữ liệu những quan hệ không đúng, việc áp dụng các phép toán(nhất là các phép nối) sẽ sinh ra các bộ giá trị không đúng, gọi là các bộ “giả”.

Nguyên tắc 4: Thiết kế các lược đồ quan hệ sao cho chúng có thể được nối với điều kiện bằng trên các thuộc tính là khoá chính hoặc khoá ngoài theo cách đảm bảo không sinh ra các bộ “giả”. Đừng có các quan hệ chứa các thuộc tính nối khác với các tổ hợp khoá chính-khoá ngoài. Nếu không tránh được những quan hệ như vậy thì đừng đừng nối chúng trên các thuộc tính đó, bởi vì các phép nối có thể sinh ra các bộ “giả”.

II.CÁC PHỤ THUỘC HÀM


Khái niệm cơ bản nhất trong thiết kế lược đò quan hệ là khái niệm phụ thuộc hàm. Trong phần này chúng ta sẽ định nghĩa hình thức khái niệm này và cách sử dụng nó để định nghĩa các dạng chuẩn cho các lược đồ quan hệ

Định nghĩa phụ thuộc hàm


Một phụ thuộc hàm là một ràng buộc giữa hai nhóm thuộc tính của một cơ sở dữ liệu. Giả sử rằng lược đồ cơ sở dữ liệu của ta có n thuộc tính A1,A2,…,An và ta hãy nghĩ rằng toàn bộ cơ sở dữ liệu được mô tả bằng một lược đồ quan hệ chung R={A1, A2, …., An}. Bạn đừng suy ra rằng cơ sở dữ liệu của chúng ta sẽ được lưu trữ trong một bảng chung, chúng ta chỉ sử dụng khái niệm này để phát triển lý thuyết hình thức về sự phụ thuộc dữ liệu. Giả sử X và Y là hai tập con của R, X  Y = .

Một phụ thuộc hàm, ký hiệu là X Y, giữa hai tập thuộc tính X và Y chỉ ra một ràng buộc trên các bộ có thể có tạo nên một trạng thái quan hệ của R. Ràng buộc đó là : với hai bộ bất kỳ t1 và t2 trong r, nếu có t1[X] = t2[X] thì cũng phải có t1[Y] = t2[Y]. Điều đó có nghĩa là các giá trị của thành phần Y của một bộ trong R phụ thuộc vào, hoặc được xác định bởi, các giá trị của thành phần X; nói cách khác, các giá trị cua thành phần X của một bộ xác định một cách duy nhất các giá trị của thành phần Y. Chúng ta cũng nói rằng có một phụ thuộc hàm từ X vào Y hoặc Y phụ thuộc hàm vào X. Phụ thuộc hàm được viết tắt là FD (functional dependency). Tập thuộc tính X được gọi là vế trái của FD, tạpp thuộc tính Y được gọi là vế phải của FD.

Như vậy, X xác định hàm Y trong lược đồ quan hệ R khi và chỉ khi nếu hai bộ của r (R) bằng nhau trên các giá trị của X thì chúng nhất thiết phải bằng nhau trên các giá trị của Y.Ta có các nhận xét sau:

. Nếu có một ràng buộc trên các trạng thái của R là chỉ có một bộ giá trị duy nhất của X trong mọi thể hiện quan hệ r(R) thì điều đó kéo theo X Y với moi tập con các thuộc tính Y của R

. Nếu X Y thì không thể nói gì về Y X

Một phụ thuộc hàm là một tính chất ngữ nghĩa của các thuộc tính. Những người thiết kế cơ sở dữ liệu sẽ dùng hiểu biết của họ về ý nghĩa của các thuộc tính của R để chỉ ra các phụ thuộc hàm có thể có trên mọi trạng thái quan hệ của r(R) của R. Khi ngữ nghiã của hai tập thuộc tính trong R chỉ ra rằng có thể có một phụ thuộc hàm, chúng ta sẽ đặc tả phụ thuộc hàm như một ràng buộc. Các trạng thái quan hệ r(R) thoả mãn các ràng buộc phụ thuộc hàm được gọi là các trạng thái hợp pháp của R, bởi vì chúng tuân theo các ràng buộc phụ thuộc hàm. Như vậy, việc sử dụng chủ yếu của các phụ thuộc hàm là dùng để mô tả một lược đồ quan hệ R bằng việc chỉ ra các ràng buộc trên các thuộc tính phải thoả mãn ở mọi thời điểm.

Một phụ thuộc hàm là một tính chất của lược đồ quan hệ R chứ không phải là tính chất của một trạng thái hợp pháp r của R. Vì vậy, một phụ thuộc hàm không thể được phát hiện một cách tự động từ một trạng thái r mà phải do một người hiểu biết ngữ nghĩa của các thuộc tính xác định một cách rõ ràng. Ví dụ, ta có quan hệ sau


Dạy

Giáoviên

Mônhọc

Tàiliệu




AA

Mônhọc 1

XX




AA

Môn học 2

YY




BB

Môn học 3

ZZ




CC

Môn học 4

TT

Mới nhìn qua, chúng ta có thể nói có một phụ thuộc hàm Tàiliệu Mônhọc, tuy nhiên chúng ta không thể khẳng định được vì điều đó chỉ đúng với trạng thái quan hệ này, biết đâu trong trạng thái quan hệ khác có thể có hai môn học khác nhau sử dụng cùng một tài liệu tham khảo. Với một trạng thái cụ thể, chúng ta chỉ có thể khẳng định là không có một phụ thuộc hàm giữa nhóm thuộc tính này và nhóm thuộc tính khác. Để làm điều đó chúng ta chỉ cần đưa ra một phản ví dụ. Chẳng hạn, ở trong quan hệ trên chúng ta có thể khẳng định rằng không có phụ thuộc hàm giữa Giáoviên và Mônhọc bằng cách chỉ ra ví dụ là AA dạy hai môn học “Môn học 1”và “Môn học 2”vậy Giáo viên không thể xác định duy nhất Môn học.

Để biểu diễn các phụ thuộc hàm trong một lược đồ quan hệ, chúng ta sử dụng khái niệm sơ đồ phụ thuộc hàm. Mỗi FD được biểu diễn bằng một đường nằm ngang. Các thuộc tính ở vế trái của FD được nối với đường biểu diễn FD bằng các đường thẳng đứng, các thuộc tính ở vế phải được nối với đường biểu diễn FD bằng mũi tên chỉ đến các thuộc tính

Ví dụ: Ta có lược đồ quan hệ

Mượn(Sốthẻ, Mãsốsách, Tênngườimượn, Tênsách, Ngàymượn)

Với các phụ thuộc hàm:

Sốthẻ Tênngườimượn

Mãsốsách  Tênsách

Sốthẻ, Mãsốsách  Ngàymượn

có sơ đồ phụ thuộc hàm như sau:

Mượn

Sốthẻ

Mãsốsách

Tênngườimượn

Tênsách

Ngàymượn

FD1

FD2

FD3





Các quy tắc suy diễn đối với các phụ thuộc hàm


Chúng ta ký hiệu F là tập các phụ thuộc hàm được xác định trên một lược đồ quan hệ R. Một phụ thuộc hàm X Y được gọi là suy diễn được từ một tập các phụ thuộc hàm F được xác định trên R nếu X Y đúng trong mỗi trạng thái quan hệ r là mở rộng hợp pháp của R; nghĩa là mỗi khi r làm thoả mãn mọi phụ thuộc hàm trong F, X Y cũng đúng trong r. Tập hợp tất cảc các phụ thuộc hàm suy diễn được từ F được gọi là bao đóng của F và được ký hiệu là F+. Để xác định một cách suy diễn các phụ thuộc hàm có hệ thống, chúng ta phải phát hiện một tập hợp các quy tắc suy diễn. Tập quy tắc này sẽ được sử dụng để suy diễn các phụ thuộc hàm mới từ một tập các phụ thuộc hàm cho trước. Ta sử dụng ký hiệu F |= X Y để ký hiệu phụ thuộc hàm X Y được suy diễn từ tập các phụ thuộc hàm F. Để cho tiện, ta viết tắt phụ thuộc hàm có dạng {X,Y}  Z thành XY  Z (nghĩa là ta nối các biến và bỏ dấu ngoặc nhọn đi). Có 6 quy tắc suy diễn đối với các phụ thuộc hàm:

QT1 (quy tắc phản xạ) : Nếu X  Y thì X Y

QT2 (quy tắc tăng) : { X Y } |= XZ  YZ

QT3 (quy tắc bắc cầu) : { X Y, Y Z } |= X Y

QT4 (quy tắc chiếu) : { X YZ } |= X Y

QT5 (quy tắc hợp) : { X Y, X Z } |= X YZ

QT6 (quy tắc tựa bắc cầu): { X Y, WY Z } |= WX Z

Quy tắc phản xạ phát biểu rằng một tập hợp các thuộc tính luôn luôn xác định chính nó hoặc một tập con bất kỳ của nó. Vì QT1 tạo ra các phụ thuộc luôn luôn đúng, những phụ thuộc như vậy được gọi là tầm thường. Một cách hình thức, một phụ thuộc hàm X Y là tầm thường nếu X  Y; ngược lại, noá được gọi là không tầm thường. Quy tắc tăng nói rằng việc thêm cùng một tập thuộc tính vào cả hai vế của một phụ thuộc hàm sẽ tạo ra một phụ thuộc hàm có giá trị. Theo quy tắc 3, các phụ thuộc hàm là bắc cầu. Quy tắc chiếu (QT4) nói rằng chúng ta có thể bỏ bớt các thuộc tính ra khỏi vế phải của phụ thuộc hàm. Việc áp dụng nhiều lần quy tắc này có thể tách phụ thuộc hàm X {A1, A2, …., An} thành một tập hợp phụ thuộc hàm { X A1, X A2, …., X An}. Quy tắc hợp cho phép chúng ta làm ngược lại; ta có thể gộp các phụ thuộc hàm { X A1, X A2, …., X An}thành một phụ thuộc hàm đơn X {A1, A2, …., An}.

Có thể chứng minh các quy tắc suy diễn ở trên một cách trực tiếp hoặc bằng phản chứng dựa trên định nghĩa của phụ thuộc hàm. Để chúng minh phản chứng, ta giả thiết một quy tắc là không đúng và chỉ ra rằng điều đó là hkông thể. Sau đây là chứng minh các quy tắc.

Quy tắc 1:

Giả sử rằng X  Y và hai bộ t1 và t2 trong một thể hiện quan hệ r của R sao cho t1[X] = t2[X]. Khi đó t1[Y] = t2[Y] bởi vì X  Y; như vậy X Y phải xẩy ra trong r.



Quy tắc 2 (chứng minh phản chứng):

Giả sử rằng X Y đúng trong một thể hiện quan hệ r của R nhưng XZ YZ không đúng. Khi đó phải có hai bộ t1 và t2 trong r sao cho (1) t1[X] = t2[X], (2) t1[Y] = t2[Y], (3) t1[XZ] = t2[XZ] và (4) t1[YZ]  t2[YZ]. Điều đó là không thể bởi vì từ (1) và (3) chúng ta suy ra (5) t1[Z] = t2[Z], và từ (2) và (5) ta suy ra t1[YZ] = t2[YZ], mâu thuẫn vói (4).



Quy tắc 3:

Giả sử rằng (1) X Y và (2) Y Z đúng trong một quan hệ r. Khi đó với mọi bộ t1 và t2 trong r sao cho t1[X] = t2[X] ta phải có (3) t1[Y] = t2[Y] theo giả thiết (1). Như vậy chúng ta cũng phải có (4) t1[Z] = t2[Z] theo (3) và giả thiết (2). Vậy X Z phải đúng trong r.

Chúng ta có thể chứng minh các quy tắc từ QT4 đên QT6 thao phương pháp trên. Tuy nhiên ta có thể lợi dụng các quy tắc đã được chứng minh là đúng để chứng minh chúng. Sau đây ta chứng minh theo cách đấy.

Quy tắc 4:

1. X YZ (cho trước)

2. YZ  Y (sử dụng QT1 và YZ  Y)

3. X Y (sử dụng QT3 trên 1. và 2.)



Quy tắc 5:

X Y (cho trước)

X Z (cho trước)

X XY (sử dụng QT2 trên 1. bằng cách thêm vào cả hai vế X, và XX=X)

X YZ (sử dụng QT2 trên 2. bằng cách thêm vào cả hai vế Y)

X YZ (sử dụng QT3 trên 3. và 4.)



Quy tắc 6:

X Y (cho trước)

WY Z (cho trước)

WX WY (sử dụng QT2 trên 1. bằng cách thêm vào cả hai vế W)

WX Y (sử dụng QT3 trên 3. và 2.)

Amstrong đã chứng minh rằng các quy tắc suy diễn từ QT1 đến QT3 là đúng và đầy đủ. Đúng có nghĩa là cho trược một tập các phụ thuộc hàm F trên một lược đồ quan hệ R, bất kỳ một phụ thuộc hàm nào suy diễn được bằng cách áp dụng các quy tắc từ QT1 đến QT3 cũng đúng trong mỗi trạng thái quan hệ r của R thoả mãn các các phụ thuộc trong F. Đầy đủ có nghĩa là việc sử dụng các quy tắc từ QT1 đến QT3 lặp lại nhiều lần để suy diễn các phụ thuộc hàm cho đến khi không còn suy diễn được nữa sẽ cho kết quả là một tập hợp đầy đủ các phụ thuộc hàm có thể được suy diễn từ F. Nói cách khác, tập hợp các phụ thuộc hàm F+ (bao đóng của F) có thể xác định được từ F bằng cách áp dụng các quy tắc suy diễn từ QT1 đến QT3. Các quy tắc từ QT1 đến QT3 được gọi là các quy tắc suy diễn Amstrong.

Thông thường, những người thiết kế cơ sở dữ liệu đầu tiên chỉ ra một tập các phụ thuộc hàm đễ xác định được nhờ ngũa nghĩa của các thuộc tính của R.

Sau đó, sử dụng các quy tắc Amstrong để suy diễn các phụ thuộc hàm bổ sung. Một cách có hệ thống để xác định tất cả các phụ thuộc hàm bổ sung là đầu tiên hãy xác định mỗi tập thuộc tính X xuất hiện ở vế trái của một phụ thuộc hàm nào đấy trong F và sau đó xác định tập hợp tất cả các thuộc tính phụ thuộc vào X. Như vậy, với mỗi tập thuộc tính X, chúng ta xác định tập X+ các thuộc tính phụ thuộc hàm vào X dựa trên F. X+ được gọi là bao đóng của X dưới F. Thuật toán xác định X+ như sau:



Thuật toán 4.1 (xác định X+, bao đóng của X dưới F)

X+ = X;

Repeat

Old X+ = X+ ;



với mỗi phụ thuộc hàm Y  Z trong F thực hiện

M nếu X+  Y thì X+= X+  Z;



until (X+ = Old X+);

Ví dụ : Xét lược đồ quan hệ

R = {MãsốNV, HọtênNV, MãsốDA, TênDA, ĐịađiểmDA, Sốgiờ }

và tập phụ thuộc hàm F = { MãsốNV  HọtênNV,

MãsốDA  TênDA, ĐịađiểmDA,

{MãsốNV, MãsốDA}  Số giờ }

áp dụng thuật toán 4.1 ta có:

{ MãsốNV}+ = { MãsốNV, HọtênNV }

{ MãsốDA }+ = { MãsốDA, TênDA, ĐịađiểmDA }

{MãsốNV, MãsốDA}+ = {MãsốNV, HọtênNV, MãsốDA, TênDA,

ĐịađiểmDA, Sốgiờ }.

Sự tương đương của các tập phụ thuộc hàm


Trong phần này chúng ta thảo luận về sự tương đương của hai tập phụ thuộc hàm. Một tập hợp các phụ thuộc hàm E được phủ bởi một tập các phụ thuộc hàm F – hoặc F phủ E-nếu mỗi một phụ thuộc hàm trong E đều ở trong F+, điều đó có nghĩa là mỗi phụ thuộc hàm trong E có thể suy diễn được từ F. Hai tập phụ thuộc hàm E và F là tương đương nếu E+ = F+. Như vậy tương đương có nghĩa là mỗi phụ thuộc hàm trong E có thể suy diễn được từ F và mỗi phụ thuộc hàm trong F có thể suy diễn được từ E.

Chúng ta có thể xác định xem F có phủ E hay không bằng cách tính X+ đối với F đối với mỗi thuộc hàm X Y trong E và sau đó kiểm tr xem X+ này có các thuộc tính trong Y hay không. Nếu điều đó xẩy ra với mỗi phụ thuộc hàm trong E, thì F phủ E. Chúng ta xác định xen E và F có tương đương hay không bằng cách kiểm tra E phủ F và F phủ E.

Ví dụ : Xét hai tập phụ thuộc hàm

F = {A  C, AC  D, E AD, E  H }

E = { A  CD, E  AH }

Ta chứng minh F phủ E :

Tìm bao đóng của các vế trái của các phụ thuộc hàm trong E theo F. áp dụng thuật toán 4.1 ở trên, ta có {A}+ = { A, C, D }; {E}+ = {E, A,D, H}, ta thấy các bao đóng này chứa các vế phải tương ứng . Từ đó suy ra F phủ E.

Ta chứng minh E phủ F :

Tìm bao đóng của các vế trái của các phụ thuộc hàm trong F theo E. Ta có {A}+ ={A,C,D }, {AC}+ = { A,C,D}, {E}+ = { E,A,H}, ta thấy các bao đóng này chứa các vế phải tương ứng . Từ đó suy ra E phủ F.

Tóm lại E tương đương với F.


Các tập tối thiểu các phụ thuộc hàm


Một tập phụ thuộc hàm là tối thiểu nếu nó thoả mãn các điều kiện sau đây:

Vế phải của các phụ thuộc hàm trong F chỉ có một thuộc tính

Chúng ta không thể thay thế bất kỳ một phụ thuộc hàm X  A trong F bằng phụ thuộc hàm Y A, trong đó Y là tập con đúng của X mà vẫn còn là một tập phụ thuộc hàm tương đương với S.

Chúng ta không thể bỏ đi bất kỳ phụ thuộc hàm nào ra khỏi F mà vẫn có một tập phụ thuộc hàm tương đương với F

Chúng ta có thể nghĩ về tập tối thiểu các phụ thuộc hàm như là một tập hợp ở dạng chuẩn không có sự dư thừa. Điều kiện 1 đảm bảo rằng mỗi phụ thuộc hàm là ở dạng chính tắc với một thuộc tính ở vế phải. Điều kiện 2 và 3 đảm bảo rằng không có sự dư thừa trong các phụ thuộc hoặc do có các thuộc tính dư thừa ở vế trái của phụ thuộc, hoặc do có một phụ thuộc có thể được suy diễn từ các phụ thuộc khác ở trong F.

Một phủ tối thiểu của một tập phụ thuộc hàm F là một tập tối thiểu các phụ thuộc hàm Fmin tương đương với F. Thường có rất nhiều các phủ tối thiểu cho một tập các phụ thuộc hàm. Chúng ta luôn luôn có thể tìm được ít nhất là một phủ tối thiểu G cho một tập các phụ thuộc hàm F bất kỳ theo thuật toán 4.2 sau đây:

Thuật toán 4.2 (Tìm phủ tối thiểu G cho F).

Đặt G := F;

Thay thế mỗi phụ thuộc hàm X  {A1, A2, …., An} trong G bằng n phụ thuộc hàm X  A1, X  A2, …, X  An

Với mỗi phụ thuộc hàm X  A trong G,

với mỗi thuộc tính B là một phần tử của X

nếu ((G-(X  A)  ((X – {B})  A) là tương đương với G

thì thay thế X A bằng (X-{B}) A ở trong G

Với mỗi phụ thuộc hàm X A còn lại trong G

nếu (G – { X A }) là tương đương với G

thì loại bỏ X  A ra khỏi G


1   ...   12   13   14   15   16   17   18   19   ...   29


Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2016
được sử dụng cho việc quản lý

    Quê hương