360R-06 Design of Slabs-on-Ground



tải về 2.35 Mb.
Chế độ xem pdf
trang9/107
Chuyển đổi dữ liệu11.08.2022
Kích2.35 Mb.
#52863
1   ...   5   6   7   8   9   10   11   12   ...   107
Design of Slabs-on-Ground

2.2—Slab types
There are four basic design choices for construction of
slabs-on-ground:
• Unreinforced concrete slab;
• Slabs reinforced to limit crack widths due to shrinkage
and temperature restraint and applied loads. These slabs
consist of the following:
–Mild steel bar, wire reinforcement, or fiber reinforce-
ment, all with closely spaced joints; and
–Continuously reinforced (sawcut contraction joint-
free floors);
• Slabs reinforced to prevent cracking due to shrinkage
and temperature restraint and applied loads. These slabs
consist of the following:
–Shrinkage-compensating concrete; and
–Post-tensioned;
• Structural slabs (ACI 318).
2.2.1 Unreinforced concrete slab—The design of this type
of slab involves determining its thickness as a plain concrete
slab without reinforcement; however, it may have joints
strengthened with steel dowels. It is designed to remain
uncracked between joints due to loads on the slab surface
and restraint to concrete volumetric changes. Unreinforced
concrete slabs do not contain high-volume macropolymeric
fibers, wire fabric, steel fibers, plain or deformed bars, post-
tensioning, or any other type of steel reinforcement. The
cement normally used is portland cement Type I or II
(ASTM C 150). The effects of drying shrinkage and uniform
subgrade support on slab cracking are critical to the perfor-
mance of unreinforced concrete slabs. Design methods for
unreinforced slabs are provided in
 Chapter 6
.
2.2.2 Slabs reinforced for crack width control—Thickness
design can be the same as for unreinforced concrete slabs,
and the slab is assumed to remain uncracked due to loads
placed on its surface. Shrinkage crack width (if cracking
occurs) for slabs constructed with portland cement is
controlled by a nominal quantity of distributed reinforcement
placed in the upper 1/3 of the slab. The primary purpose of
the reinforcement is to limit the width of any cracks that may
form between the joints. Bar or wire reinforcement should be
stiff enough so that it can be accurately located in the upper
1/3 of the slab. Slabs may be reinforced with reinforcing
bars, welded wire reinforcement sheets, steel fibers, or
macropolymeric fibers.
Bars or welded wire reinforcement can be used to provide
moment capacity at a cracked section. In this case and for
slabs of insufficient thickness to carry the applied loads as an
unreinforced slab, the reinforcement required for strength
should be sized by conventional reinforced concrete theory
as described in ACI 318. Using the methods in ACI 318 with
high steel reinforcement stresses, however, may lead to
unacceptably wide crack widths. Currently, building codes
do not support the use of fiber reinforcement to provide
moment capacity in cracked sections.
Reinforcement, other than post-tensioning or the reinforce-
ment used in a shrinkage-compensating slab, does not prevent
cracking. Typically, the most economical way to obtain
increased load-carrying capacity is to increase the thickness
of the slab. Design methods for slabs reinforced for limiting
crack width can be found in 
Chapters 6
,
 7
, and 
10
.
2.2.3 Slabs reinforced to prevent cracking—Post-
tensioned slabs and shrinkage-compensating slabs are typically
designed not to crack. Some incidental minor cracking may
still occur, however. The reinforcement is used to prevent
the slab from cracking. For shrinkage-compensating slabs,
the slab is designed unreinforced, and the reinforcement is
designed to prestress the expanding slab to resist the later
shrinkage and temperature restraint. For post-tensioned
slabs, the reinforcement is typically designed to resist the
shrinkage and temperature restraint and the applied loads.
Shrinkage-compensating concrete slabs are produced
either with a separate component admixture or with ASTM
C 845 Type K cement, which is expansive. This concrete
does shrink, but first expands to an amount intended to be
slightly greater than its drying shrinkage. Distributed reinforce-
ment is used in the upper 1/3 of the slab to limit the initial
slab expansion and to prestress the concrete. Reinforcement
should be rigid and supported so that it can be positively
positioned in the upper 1/3 of the slab. The slab should be
isolated from fixed portions of the structure, such as columns



tải về 2.35 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   5   6   7   8   9   10   11   12   ...   107




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương