360R-06 Design of Slabs-on-Ground


TEMPERATURE °C = (°F – 32)/1.8 °F = (1.8 × °C) + 32 1 °F/in. = 0.22 °C/cm SPECIFIC WEIGHT



tải về 2.35 Mb.
Chế độ xem pdf
trang107/107
Chuyển đổi dữ liệu11.08.2022
Kích2.35 Mb.
#52863
1   ...   99   100   101   102   103   104   105   106   107
Design of Slabs-on-Ground

TEMPERATURE
°C = (°F – 32)/1.8
°F = (1.8 × °C) + 32
1 °F/in. = 0.22 °C/cm
SPECIFIC WEIGHT
1 lb water = 27.7 in.
3
= 0.1198 gal.
1 ft
3
water = 62.43 lb
1 gal. water = 8.345 lb
WATER-CEMENT RATIO
Multiply w/c by 11.3 to obtain gallons per bag
AREA
1 in.
2
= 6.452 cm
2

Document Outline

  • MAIN MENU
  • CONTENTS 
  • CHAPTER 1— INTRODUCTION 
    • 1.1— Purpose and scope
    • 1.2—Work of ACI Committee 360 and other relevant committees
      • 1.2.1
      • 1.2.2
      • 1.2.3
      • 1.2.4
      • 1.2.5
      • 1.2.6
      • 1.2.7
      • 1.2.8
    • 1.3—Work of non-ACI organizations
    • 1.4—Design theories for slabs-on-ground
      • 1.4.1 Introduction
      • 1.4.2 Review of classical design theories
      • 1.4.3 Finite-element method
    • 1.5—Overview of subsequent chapters
    • 1.6—Further research
  • CHAPTER 2— SLAB TYPES 
    • 2.1— Introduction
    • 2.2—Slab types
      • 2.2.1 Unreinforced concrete slab
      • 2.2.2 Slabs reinforced for crack width control
      • 2.2.3 Slabs reinforced to prevent cracking
      • 2.2.4 Structural slabs
    • 2.3—General comparison of slab types
    • 2.4—Design and construction variables
    • 2.5—Conclusion
  • CHAPTER 3— SOIL SUPPORT SYSTEMS FOR SLABS- ON- GROUND 
    • 3.1— Introduction
    • 3.2—Geotechnical engineering reports
      • 3.2.1 Introduction
      • 3.2.2 Boring or test pit logs
      • 3.2.3 Report evaluations and recommendations
    • 3.3—Subgrade classification
    • 3.4—Modulus of subgrade reaction
      • 3.4.1 Introduction
      • 3.4.2 Plate load field tests
      • 3.4.3 American Association of State Highway Officials (AASHTO) approach
      • 3.4.4 Other approaches
      • 3.4.5 Influence of moisture content
      • 3.4.6 Influence of soil material on modulus of subgrade reaction
      • 3.4.7 Uniformity of support
      • 3.4.8 Influence of size of loaded area
      • 3.4.9 Influence of time
    • 3.5—Design of slab-support system
      • 3.5.1 General
      • 3.5.2 Economics and simplified design
      • 3.5.3 Bearing support
    • 3.6—Site preparation
      • 3.6.1 Introduction
      • 3.6.2 Proof rolling
      • 3.6.3 Subgrade stabilization
      • 3.6.4 Subbase and base materials
      • 3.6.5 Stabilization of base and subbase
      • 3.6.6 Grading tolerance
      • 3.6.7 Vapor retarder/barrier 
    • 3.7—Inspection and site testing of slab support
    • 3.8—Special slab-on-ground support problem
  • CHAPTER 4— LOADS 
    • 4.1— Introduction
    • 4.2—Vehicular loads
    • 4.3—Concentrated loads
    • 4.4—Distributed loads
    • 4.5—Line and strip loads
    • 4.6—Unusual loads
    • 4.7—Construction loads
    • 4.8—Environmental factors
    • 4.9—Factors of safety
  • CHAPTER 5— JOINTS 
    • 5.1— Introduction
      • 5.1.1 Isolation joints
      • 5.1.2 Construction joints
      • 5.1.3 Sawcut contraction joints
    • 5.2—Load-transfer mechanisms
    • 5.3—Sawcut contraction joints
    • 5.4—Joint protection
    • 5.5—Joint filling and sealing
      • 5.5.1 Time of filling and sealing
      • 5.5.2 Installation
  • CHAPTER 6— DESIGN OF UNREINFORCED CONCRETE SLABS
    • 6.1—Introduction
    • 6.2—Thickness design methods
      • 6.2.1 PCA design method
        • 6.2.1.1 Wheel loads
        • 6.2.1.2 Concentrated loads
        • 6.2.1.3 Uniform loads
        • 6.2.1.4 Construction loads
      • 6.2.2 Wire Reinforcement Institute (WRI) design method
        • 6.2.2.1 Introduction
        • 6.2.2.2 Wheel loads
        • 6.2.2.3 Concentrated loads
        • 6.2.2.4 Uniform loads
        •  6.2.2.5 Construction loads—
      • 6.2.3 COE design method
    • 6.3—Shear transfer at joints
      • 6.3.1 Steel dowels
    • 6.4—Maximum joint spacing
  • CHAPTER 7— DESIGN OF SLABS REINFORCED FOR CRACK- WIDTH CONTROL 
    • 7.1— Introduction
    • 7.2—Thickness design methods
    • 7.3—Reinforcement for crack-width control only
    • 7.4—Reinforcement for moment capacity
    • 7.5—Reinforcement location
  • CHAPTER 8— DESIGN OF SHRINKAGE-COMPENSATING CONCRETE SLABS 
    • 8.1— Introduction
      • 8.1.1 Portland-cement and blended-cement concrete
      • 8.1.2 Shrinkage-compensating concrete compared with conventional concrete
    • 8.2—Thickness determination
    • 8.3—Reinforcement
      • 8.3.1 Restraint
      • 8.3.2 Minimum reinforcement
      • 8.3.3 Minimum reinforcement
      • 8.3.4 Maximum reinforcement
      • 8.3.5 Alternative minimum restraint levels
    • 8.4—Other considerations
      • 8.4.1 Curvature benefits
      • 8.4.2 Prism and slab expansion strains and stresses
      • 8.4.3 Expansion/isolation joints
      • 8.4.4 Construction joints
      • 8.4.5 Placing sequence
      • 8.4.6 Placing sequence
    • 8.1.1
      • Portland-cement and blended-cement concrete—
      • As
      • h
      • fs
      • As
      • h
      • fs
      • fc'
    • 8.1.2
      • Shrinkage-compensating concrete compared with
      • conventional concrete—
  • CHAPTER 9—DESIGN OF POST-TENSIONED SLABS- ON- GROUND
    • 9.1—Notation
    • 9.2—Definitions
    • 9.3—Introduction
    • 9.4—Applicable design procedures
      • 9.4.1 Thickness design
      • 9.4.2 Crack-control design
      • 9.4.3 Industrial floor design
      • 9.4.4 Post-Tensioning Institute (PTI) method
    • 9.5—Slabs post-tensioned for crack control
      • 9.5.1 Design methods
      • 9.5.2 Post-tensioning force required
      • 9.5.3 Floating slab
      • 9.5.4 Tendon stressing
      • 9.5.5 Tendon layout
    • 9.6—Industrial slabs with post-tensioned reinforcement for structural support
      • 9.6.1 Design methods
      • 9.6.2 Safety factors
      • 9.6.3 Safety factors
      • 9.6.4 Joint requirements
        • 9.6.4.1 Strip placements
        • 9.6.4.2 Placement of rectangular sections
      • 9.6.5 Special considerations
    • 9.7—Residential slabs with post-tensioned reinforcement for structural action
      • 9.7.1 Soil properties
      • 9.7.2 Structural data and materials properties
      • 9.7.3 Design stresses for the concrete
    • 9.8—Design for slabs on expansive soils
      • 9.8.1 Moments
      • 9.8.2 Differential deflection
      • 9.8.3 Shear
        • 9.8.3.1 Applied service load shear stress v
      • 9.8.4 Uniform thickness conversion
      • 9.8.5 Other applications of design procedure
        • 9.8.5.1 Other applications of design procedure
        • 9.8.5.2 Design of slabs subject to frost heave
      • 9.8.6 Calculation of stress in slabs due to load-bearing partitions
    • 9.9—Design for slabs on compressible soil
      • 9.9.1 Moments
      • 9.9.2 Anticipated differential deflection
      • 9.9.3 Shear
  • CHAPTER 10— FIBER-REINFORCED CONCRETE SLABS- ON- GROUND 
    • 10.1— Introduction
    • 10.2—Polymeric fiber reinforcement
      • 10.2.1 Properties of polymeric fibers
      • 10.2.2 Design principles
      • 10.2.3 Joint details
    • 10.3—Steel fiber reinforcement
      • 10.3.1 Properties of steel fibers
      • 10.3.2 Properties of steel FRC
        • 10.3.2.1 Random crack control
        • 10.3.2.2 Crack width opening
        • 10.3.2.3 Flexural toughness (ductility)
        • 10.3.2.4 Impact resistance
        • 10.3.2.5 Fatigue resistance
        • 10.3.2.6 Shear resistance
        • 10.3.2.7 Freezing-and-thawing resistance
        • 10.3.2.8 Durability in corrosive environments
      • 10.3.3 Thickness design methods
        • 10.3.3.1 PCA/WRI/COE method
        • 10.3.3.2 Elastic method
        • 10.3.3.3 Yield line method
        • 10.3.3.4 Nonlinear finite element computer modeling
        • 10.3.3.5 Steel fibers combined with bar reinforcement
      • 10.3.4 Joint details
  • CHAPTER 11— STRUCTURAL SLABS-ON-GROUND SUPPORTING BUILDING CODE LOADS
    • 11.1—Introduction
    • 11.2—Design considerations
  • CHAPTER 12— DESIGN OF SLABS FOR REFRIGERATED FACILITIES 
    • 12.1— Introduction
    • 12.2—Design and specification considerations
      • 12.2.1 Insulation modulus
      • 12.2.2 Compressive creep
      • 12.2.3 Reinforcement
      • 12.2.4 Joints
      • 12.2.5 Curing
      • 12.2.6 Underslab tolerance
      • 12.2.7 Forming
    • 12.3—Temperature drawdown
  • CHAPTER 13— REDUCING EFFECTS OF SLAB SHRINKAGE AND CURLING 
    • 13.1— Introduction
    • 13.2—Drying and thermal shrinkage
    • 13.3—Curling and warping
    • 13.4—Factors that affect shrinkage and curling
      • 13.4.1 Effect of maximum size of coarse aggregate
      • 13.4.2 Influence of cement
      • 13.4.3 Influence of slump
      • 13.4.4 Influence of water-reducing admixtures
    • 13.5—Compressive strength and shrinkage
    • 13.6—Compressive strength and abrasion resistance
    • 13.7—Removing restraints to shrinkage
    • 13.8—Base and vapor retarders/barriers
    • 13.9—Distributed reinforcement to reduce curling and number of joints
    • 13.10—Thickened edges to reduce curling
    • 13.11—Relation between curing and curling
    • 13.12—Warping stresses in relation to joint spacing
    • 13.13—Warping stresses and deformation
    • 13.14—Effect of eliminating sawcut contraction joints with post- tensioning or shrinkage-compensating concrete
    • 13.15—Summary and conclusions
  • CHAPTER 14— REFERENCES 
    • 14.1— Referenced standards and reports
    • 14.2—Cited references
  • APPENDIX 1— DESIGN EXAMPLES USING PCA METHOD 
    • A1.1— Introduction
    • A1.2—PCA thickness design for single-axle load
    • A1.3—PCA thickness design for slab with post loading
    • A1.4—Other PCA design information
  • APPENDIX 2— SLAB THICKNESS DESIGN BY WRI METHOD 
    • A2.1— Introduction
    • A2.2—WRI thickness selection for single-axle wheel load
    • A2.3—WRI thickness selection for aisle moment due to uniform loading
  • APPENDIX 3— DESIGN EXAMPLES USING COE CHARTS 
    • A3.1— Introduction
    • A3.2—Vehicle wheel loading
    • A3.3—Heavy forklift loading
  • APPENDIX 4— SLAB DESIGN USING POST- TENSIONING
    • A4.1—Design example: Residential slabs on expansive soil
      • A4.1.1 Design data including design soil values
      • A4.1.2 Design for edge lift
      • A4.1.3 Design for edge lift continued; service moments compared with design moments
      • A4.1.4 Design for center lift
    • A4.2—Design example: Using post-tensioning to minimize cracking
    • A4.3—Design example: Equivalent tensile stress design
  • APPENDIX 5— DESIGN EXAMPLES USING SHRINKAGE- COMPENSATING CONCRETE 
    • A5.1— Introduction
    • A5.2—Example with amount of steel and slab joint spacing predetermined
  • APPENDIX 6— DESIGN EXAMPLES FOR STEEL FRC SLABS- ON- GROUND USING YIELD LINE METHOD 
    • A6.1— Introduction
    • A6.2—Assumptions/design criteria
      • A6.2.1 Calculations for a concentrated load applied a considerable distance from slab edges
      • A6.2.2 Calculations for post load applied adjacent to sawcut contraction joint
  • CONVERSION FACTORS

tải về 2.35 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   99   100   101   102   103   104   105   106   107




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương